Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Proc Natl Acad Sci U S A ; 119(37): e2210321119, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2001009

ABSTRACT

Long noncoding RNAs (lncRNAs) have emerged as critical regulators of gene expression, yet their contribution to immune regulation in humans remains poorly understood. Here, we report that the primate-specific lncRNA CHROMR is induced by influenza A virus and SARS-CoV-2 infection and coordinates the expression of interferon-stimulated genes (ISGs) that execute antiviral responses. CHROMR depletion in human macrophages reduces histone acetylation at regulatory regions of ISG loci and attenuates ISG expression in response to microbial stimuli. Mechanistically, we show that CHROMR sequesters the interferon regulatory factor (IRF)-2-dependent transcriptional corepressor IRF2BP2, thereby licensing IRF-dependent signaling and transcription of the ISG network. Consequently, CHROMR expression is essential to restrict viral infection of macrophages. Our findings identify CHROMR as a key arbitrator of antiviral innate immune signaling in humans.


Subject(s)
COVID-19 , DNA-Binding Proteins , Immunity, Innate , Influenza A virus , Influenza, Human , RNA, Long Noncoding , SARS-CoV-2 , Transcription Factors , COVID-19/genetics , COVID-19/immunology , DNA-Binding Proteins/metabolism , Humans , Immunity, Innate/genetics , Influenza A virus/immunology , Influenza, Human/genetics , Influenza, Human/immunology , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/physiology , SARS-CoV-2/immunology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL